Title: | Case-Control and TDT Meta-Analysis Package |
---|---|
Description: | Although many software tools can perform meta-analyses on genetic case-control data, none of these apply to combined case-control and family-based (TDT) studies. This package conducts fixed-effects (with inverse variance weighting) and random-effects [DerSimonian and Laird (1986) <DOI:10.1016/0197-2456(86)90046-2>] meta-analyses on combined genetic data. Specifically, this package implements a fixed-effects model [Kazeem and Farrall (2005) <DOI:10.1046/j.1529-8817.2005.00156.x>] and a random-effects model [Nicodemus (2008) <DOI:10.1186/1471-2105-9-130>] for combined studies. |
Authors: | Thomas Quinn [aut, cre], Kristin Nicodemus [aut], Glaucia Martins [ctb], Carlos Maia [ctb] |
Maintainer: | Thomas Quinn <[email protected]> |
License: | GPL-2 |
Version: | 1.6.4 |
Built: | 2024-10-31 02:48:31 UTC |
Source: | https://github.com/tpq/catmap |
This package conducts fixed-effects (with inverse variance weighting) and random-effects [DerSimonian and Laird (1986)] meta-analyses of case-control or family-based (TDT) genetic data. In addition, catmap performs meta-analyses which combine these two types of study designs. Specifically, this package implements a fixed-effects model [Kazeem and Farrall (2005)] and a random-effects model [Nicodemus (2008)] for combined studies.
catmap(dataset, ci = 0.95, printout = FALSE)
catmap(dataset, ci = 0.95, printout = FALSE)
dataset |
A |
ci |
A numeric value. The confidence level for confidence intervals; 0 < ci < 1. |
printout |
A boolean. Toggles whether a text file of the models and Q statistic results should get saved to the working directory. |
Use the output of the catmap
function to generate figures using
secondary functions. These secondary functions produce output as either
a txt file, a pdf plot, or both.
A standard forest plot is available via catmap.forest
.
A funnel plot is available via catmap.funnel
. However,
no formal test of publication bias is available (see
[Ioannidis and Trikalinos (2007)]).
In addition, cumulative meta-analyses over time (catmap.cumulative
)
and leave-one-out sensitivity analyses (catmap.sense
) are
available for the fixed-effects estimates and random-effects estimates.
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE)
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE)
The catmap.cumulative
conducts cumulative meta-analyses
and creates plots of Odds Ratios (OR) and Confidence Intervals (CI)
using a fixed-effects or random-effects model. Note that studies
should be listed in chronological order in the input file! This
function does not re-order studies by publication year! Also
note that random-effects estimates are not defined for a single
(i.e., the first) study.
catmap.cumulative(catmapobject, fe.forest = FALSE, re.forest = FALSE, printout = FALSE)
catmap.cumulative(catmapobject, fe.forest = FALSE, re.forest = FALSE, printout = FALSE)
catmapobject |
A catmap object created by |
fe.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
re.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
printout |
A boolean. Toggles whether a text file of the models and Q statistic results should get saved to the working directory. |
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.cumulative(catmapobject, FALSE, FALSE, FALSE)
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.cumulative(catmapobject, FALSE, FALSE, FALSE)
The catmap.forest
creates forest plots of the individual study
Odds Ratios (OR) and Confidence Intervals (CI). It then summarizes the
data using a fixed-effects or random-effects pooled OR and CI.
catmap.forest(catmapobject, fe.forest = FALSE, re.forest = FALSE)
catmap.forest(catmapobject, fe.forest = FALSE, re.forest = FALSE)
catmapobject |
A catmap object created by |
fe.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
re.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.forest(catmapobject, TRUE, TRUE)
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.forest(catmapobject, TRUE, TRUE)
The catmap.funnel
creates a funnel plot of the individual Log Odds Ratio
against the standard error of the Log Odds Ratio. The vertical line indicates
the combined Log Odds Ratio. Per the metafor
package, "A pseudo
confidence interval region is drawn around this value with bounds equal
to +/- 1.96 SE".
catmap.funnel(catmapobject, funnel = FALSE)
catmap.funnel(catmapobject, funnel = FALSE)
catmapobject |
A catmap object created by |
funnel |
A boolean. Toggles whether the funnel plot should get saved to the current working directory. |
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.funnel(catmapobject, TRUE)
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.funnel(catmapobject, TRUE)
The catmap.sense
conducts leave-one-out sensitivity analyses
and creates plots of Odds Ratios (OR) and Confidence Intervals (CI)
using a fixed-effects or random-effects model.
catmap.sense(catmapobject, fe.forest = FALSE, re.forest = FALSE, printout = FALSE)
catmap.sense(catmapobject, fe.forest = FALSE, re.forest = FALSE, printout = FALSE)
catmapobject |
A catmap object created by |
fe.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
re.forest |
A boolean. Toggles whether the forest plot should get saved to the current working directory. |
printout |
A boolean. Toggles whether a text file of the models and Q statistic results should get saved to the working directory. |
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.sense(catmapobject, FALSE, FALSE, FALSE)
data(catmapdata) catmapobject <- catmap(catmapdata, 0.95, TRUE) catmap.sense(catmapobject, FALSE, FALSE, FALSE)
catmap
DataAn example data set for use with catmap
. All input data should
have the header as part of the file and either 0 or NA values for entries
not relevant to that particular study design. For example, TDT studies
should have the caserisk, controlrisk, casenotrisk and controlnotrisk
values set to either 0 or NA.
catmapdata
catmapdata
A data.frame
with 5 observations and 8 variables.
name: a factor with study name and optionally year of publication.
NOTE: if year of publication is included there must be no space between
study name and year. A comma or underscore works nicely (e.g.,
Abrams,2001
Peter,2002
Todd,2003
Wei,2007
Yu,2007
)
study: a numeric vector containing 1 if the study is TDT and 2 if the study is case-control
t: a numeric vector containing counts of alleles transmitted in the TDT study
nt: a numeric vector containing counts of alleles not transmitted in the TDT study
caserisk: a numeric vector containing counts of risk alleles in cases
controlrisk: a numeric vector containing counts of risk alleles in controls
casenotrisk: a numeric vector containing counts of non-risk alleles in cases
controlnotrisk: a numeric vector containing counts of non-risk alleles in controls
Algorithm designed and implemented by Kristin K. Nicodemus. Code modified and updated by Thom Quinn.
catmap
, catmap.forest
,
catmap.sense
, catmap.cumulative
,
catmap.funnel
A back-end wrapper function used to make forest plots.
makeForest(catmapobject, summary = "", main = "Main Title", mean = exp(catmapobject$logOR), lower = catmapobject$lbci.fe, upper = catmapobject$ubci.fe, study = c("Study", sub(",", " ", catmapobject$studyname)))
makeForest(catmapobject, summary = "", main = "Main Title", mean = exp(catmapobject$logOR), lower = catmapobject$lbci.fe, upper = catmapobject$ubci.fe, study = c("Study", sub(",", " ", catmapobject$studyname)))
catmapobject |
A catmap object created by |
summary |
A character string. The kind of summary statistic to plot. Select from "fixed" or "random". |
main |
A character string. The figure title. |
mean , lower , upper , study
|
Numeric or character vectors. Used to guide the construction of the forest plot. |